From Scenariosto Code: An Air Traffic Control CaseStudy

JonWhittle
QSSGroup/NASA AmesResearctCenter
jonathw@email.arc.nasago

RichardKwan
RaytheonNASA AmesResearclCenter
rkwan@mail.arc.nasa.go

Jyoti Saboo
Foothill College/NASA AmesResearcltCenter
jsaboo@email.arc.nasaxgo

Abstract

Two high profile workshopsat OOPSLAand ICSE, an
IEEE Computerarticle by David Harel anda growingnum-
ber of reseach papess haveall sugyestedalgorithmsthat
translatescenariosof a systens behaviorinto state ma-
chines. Oneof the usesof sud algorithmsis in thetransi-
tion from requirementsscenariosto componentlesign. To
date however, there hasbeenno real evaluation of these
algorithmson a realistic casestudy In this paper we do
exactly that for the algorithm presentedn [10]. Our case
studyis a componenof an air traffic advisorysystendevel-
opedat NASAAmesReseath Center

1 Intr oduction

Therehasbeena lot of interestrecentlyin the possible
role of algorithmsthat generatestatemachinesautomati-
cally from scenariosof intendedsystembehavior — wit-
nessfor example,successfuvorkshopsatthe ICSEO2and
OOPSLAO1conferences.A scenariois a traceof anin-
dividual executionof a (software) artifact[9]. Scenarios
arewidely usedbecausehey describeconcretenteractions
andarethereforeeasierfor customersanddomainexperts
to usethananabstracimodel. Many popularsoftwarepro-
cessesadwcatethe developmentof scenariosasaninitial
softwaredesignactiity. Thesescenariosarethenusedas
a startingpoint to develop more detaileddesigns,e.g., in
the form of statemachines.An obvious questionto askis
whetherthis transitioncanbe partially automated.In fact,
Harelraisedthisquestionn hisoriginal paperonstatecharts
[2] andresearcherarenow beginningto investigatet (e.g.,
[4, 5]). To date,however, the focus hasbeenon develop-
ing algorithmsto translatérom scenariogo statemachines.
The transitionis essentiallyfrom a global scenario-based
view (in whichinteractionsdbetweerall systemcomponents

areconsidered}o local component-basedews (in which
a statemachineis given for eachcomponentas a precur
sor to implementation). To the authors’knowledge, there
have beenno significantcasestudiesin usingthesealgo-
rithmsto translatérom requirementscenariogo statema-
chines. In this paper we do exactly that— we apply the
algorithmfrom [10] to theweathercontrollogic subsystem
of CTAS (CenterTRACON AutomationSystem)which is
underdevelopmentat NASA AmesResearciCenter The
objective of this studywasto assessvhetherit is possible
to usescenario-to-statmachinealgorithms(ss-algorithms)
to reliably developmodelsof a distributedsystem.

2 Background

A scenariacanbethoughtof asa particularpaththrough
the (intendedor actual) behaior of a system. Scenarios
can be either exemplary— in which one concretepath is
described- or complete,in which a more abstractrepre-
sentationdescribingmultiple concreteinstancess given.
Scenariogdypically involve multiple componentof a sys-
tem. Scenario-to-statenachinealgorithmscanbe usedon
both completeandexemplaryscenarios.Their application
to exemplaryscenarioss generallyusefulfor exploring an
incompletesetof requirementgo validateor extendit. In
contrast,completescenariocanbe usedto fully specifya
systemand completestatemachinescan be derived from
them. In this paperwe will considerthecompletecase.ln
addition,we will assumehatscenariosaregivenasUML
sequenceliagramsand our translationalgorithm [10] will
outputUML statecharts.

Themajorchallengdor ss-algorithmdiesin thefactthat
eachscenarids usuallywrittenin isolationfrom the others.
To obtaina local model of eachcomponentthe scenarios
have to be weavedtogetherin sucha way thatonly beha-
ior relevantto thatcomponenis extractedand memgedto-
gether Most ss-algorithmshave astheir basisa translation

in which messageseceved by a componenin a scenario
are consideredas trigger eventsin the componens state-
chart. Similarly, messagesentto a componentare con-

sideredasactionsfor thatcomponen(seefigure 1'). What
distinguishesglifferentss-algorithmss in thewaythey iden-
tify samestatesn differentscenario@andhenceweave the

scenarios.[7] weaves scenarioasedonly on a common
prefix in the messageand hencecannotmemge statesthat
are the samebut do not stemfrom the samesequencef

messagesSCED[4] appliesmeiging basedon the names
of the actionsbut this doesnot allow the sameaction to

have a differenteffectin differentstates[5] andothersuse
specialstatelabelsto explicitly identify pointsin different
scenarios[10] allowstheuserto give moredeclaratve con-
straints(in the form of messagere/post-conditionsjrom

which stateidentitiescanbe derived. In this casestudy we

will usethe ss-algorithmfrom [10] extendedwith the state
labelsfeature. Statelabelsfit this particularproblemwell

because¢he scenariosverewell defined.

States

‘ € ‘ for B

L]

plg

)

S r/s

L]

Figure 1. The basic idea underl ying most ss-
algorithms

-

3 The CaseStudy

CTAS (CenterTRACON Automation System)[1] is a
setof tools designedo help air traffic controllersmanage
the increasinglycomple air traffic flows at large airports.
Theprojectbeganin 1991andprototypesarenow deployed
at Derver and Dallas/Fort Worth airports. Extensionsto
the core CTAS systemare constantlybeingintegratedand
incorporatethe latestdevelopmentsrom researctinto air
traffic control systems.Figure 2 givesan overview of the
software architecturefor CTAS. CTAS consistsof a set
of advisorytools anda setof processeshat supportthese
tools. In Figure 2, CM is the CommunicationdManager
which handlesall communicationdetweerthe variousad-
visory tools and supportprocesses.TS is the Trajectory
Synthesizewhich generatedD trajectoriesandETAs that
all CTAS toolsdependon. RA (RouteAnalyzer)generates

1As usual,a/ b denotesthata is a trigger event andb is the action
carriedoutin responseéo thetrigget

all possiblefuture routesfor an aircraft. PFS(Profile Se-
lector)assignsunwaysfor approachingircraft. PGUl and
TGUI aregraphicaluserinterfaces WDAD is ascriptthatis
responsibldor gatheringweatherdatafiles from hostsand
making them available on the CTAS network file system.
WDPD is responsibldor corvertingraw weatheffiles pro-
videdvia WDAD into binaryweatheffiles usableby CTAS.

CTAS Processes

| HDAR | | ADAR |

| WDAD v WDPD & \SLM
.

TGUI

r
CM

|

PGUI

f
;

RA PFS
TMA, TS
EDA only TS TS
Direct-To/
"= FAST only EDA only
Figure 2. CTAS Architecture Description

(taken from nttp://www.ctas.arc.nasa.gov)

Oneof themostcrucial partsof anair traffic controlsys-
temis the subsystenthatdealswith weatherdata. Adverse
weatherconditionscan grind an entire traffic control sys-
temto ahalt, soit isimperativethateachof thecomponents
of CTAS is notified of weatherforecastupdates.The sub-
ject of the casestudyis the subsystenof CTAS thatdeals
with weatherdata updates. The top-level requirementof
this systenis thatevery clientthatusesweathematashould
be notified of a weatherupdateandall clients shouldbe-
gin usingthe updatedweatherdataat the sametime. The
logic thatimplementghis subsystenis definedby tenpages
of Englishtextual requirements.For eachweatherupdate,
a WeatherCycle is invoked to updateall weatheraware
clients. Similarly, the WeatherCycle is invokedto provide
weathematato new clients. The WeatherCycleis splitinto
two subg/cles— onefor the overall control of the update,
and oneto keeptrack of the relative statesof the clients.
Eachrequirementescribeshebehaior of the CM accord-
ing to the currentstagein thecycle, for example:

2.8.9 The CM should performthe follow ng actions
when the Weather Cycle status is ‘post-
initializing’ and the newmy connected
weat her-aware client has responded no to
the CTAS_USE_NEW WIHR nessages
(i.e., wthr_status = FAI LED USE)

(a) it should set the Weather Cycle status to ‘done’;

(b) it should enable the F2 weather control
‘‘set’’ button

(c) it should send a CM CLOSE_CONNECTI ON nessage to
the newWy connected client

panel

4 Objectives

The completesetof requirementslescribesa statema-
chine expressingthe weatherupdatelogic componentof
CTAS, where eachrequirementdescribesa partial path
throughthe statemachine(i.e., a partial scenario). These
partial scenarioslsooverlap— the requirementslesigner
wrote down eachrequirementvithout regardfor how it in-
teractswith otherrequirements.

The codethatimplementshe weatherupdatelogic had
alreadybeenimplementednanuallyin C. The objectie of
the casestudywasto reproducehis codedirectly from the
requirementsscenarios. The personnelon the casestudy
consistedf asoftwaredeveloperfrom the CTAS team(not
the original developerof the code),one of the researchers
who developedthe ss-algorithn]10] anda student.There-
guirementswere translatedinto UML sequencaliagrams
from which state machineswere automaticallygenerated
using the tool from [10]. The commercialtool Rational
RoseRealTime [3] wasthen usedto generateC++ code
from the state machines. This code was integratedinto
the existing systemand testedagainstthe original, manu-
ally developedweathercontrollogic code. Twenty of these
requirementsverewritten asUML sequenceéliagrams.In
general,the researcheand studentcameup with the se-
guenceadiagramsandtheniteratedwith the CTAS engineer
The othermainrole of the CTAS engineemwasto integrate
the code generatedrom the statechartsnto the existing
CTAS systemandperformtestingonit. To summarizehe
results,this exerciseshoved that it is possibleto generate
codedirectly from UML sequencealiagrams. This code
passedll testcases.Figure 3 givesthe sequenceliagram
for the requiremen®.8.9above. Figure4 shows a portion
of thestatechargeneratedor CM. It includes2.8.9.

5 Obsewations

5.1 Expressingthe requirementsassequencalia-
grams

All ss-algorithmsuse someform of sequencechartas
their input language— either UML sequenceadiagrams,
high-levelmessagsequencehartshMSCs)or similar. Se-
guencediagramsare an attractve choice becauseof their
simplicity. For addedexpressvity, however, we usedan
extendedversionof sequencaliagramswith explicit state
labels. For this casestudy the requirementsare already

‘ F2Panel Client_Status

‘CMCycIe

EN

POSTINITIALIZE POSTINITIALIZE

no_CTAS_USE_NEW_WTHR

FAILED_USE

- FAILED_USE

‘ Client ‘

(9]

enableSgtButton
- CM_CLOSE| CONNECTION |

(oo |

Figure 3. Scenario 2.8.9

checkForUpdates[forecast.isLive()]

DONE %
A

FAILED_USE/enableSetButton;
CM_CLOSE_CONNECTION

POSTINITIALIZE

null/removePendingWeather;enableSetButton;

writeToCMSim(forecast);CM_CLOSE_CONNECTION

POSTUPDATE POSTREVERT

SUCCEEDED_GET

FAILED_GET

UPDATE

Figure 4. Part of the generated statec hart

state-oriented— statesare usedboth as preconditionsto
scenariosandwithin scenariogo synchronizethe statesof
asubsystente.g.,clientor panel).

Initially, the authorsbegan modelingthe requirements
directly asa setof statemachines. This turnedout to be
a surprisingly difficult exercise,however. The CM hasa
numberof statescorrespondingo the currentstateof the
WeatherCycle: unknown, preinitializing, initializing, pos-
tinitializing, preupdating,updating, postupdatingpostre-
verting and done. Each weatheraware client has these
statesin addition to statesdescribingwhetheror not the
clienthasrecevednew weatheidataandwhetheror notit is
ableto usethisnew weatheidata(succeededjet,failed get,
succeededise,failed.use).In orderto capturethe require-
mentscorrectly the statesof the CM andof theclientsmust
betightly coupledtogether Thesecouplingsaredistributed
acrossthe entire requirementsiocumentand so capturing
them directly as statemachinesis a time consumingand
errorpronetask.In contrastfranslatingthetwentyrequire-
mentsinto sequenceliagramgaook aboutonehour of cleri-
calwork.

Therewere,however, a numberof issueshat could not
easily be expressedas sequencediagrams(or ary other
sequencechart notation). Many of the messagesn the

requirementsare universalor existentialmessages— that
is, the scenariais dependenbn receiptof a messagdrom
all (alternatively, any one of) the instancef a classifier
It is unclearhow to representhis on a sequencaliagram.
Of course, this could be done by attachinga textual
note but the difficulty is representingthis information
in such a way that a synthesisalgorithm can generate
appropriatestatesfor it. One possibility is to use UML'’s
constraintlanguage,OCL ([8]). The requirementthat
“all connected weatheraware clients have responded
yes to the CTAS_.USENEW_WTHR” messagecould be
written asCl i ent . al | I nstances()-> forall (i

| receive(CM yes_CTAS.USE.NEWWHR, i))
wherereceive(i,m, j) denotesthe receiptof messagen
from instance;j by instancei. The problemwith using
OCL is thatthe useris giventoo muchfreedomto specify
arbitrary constraintsthat may or may not be relevant to
synthesis.The synthesisalgorithmwould needto look for
OCL patternsto trigger the generationof the appropriate
state machinetransitions. This would rely on the user
specifying the constraintin the form given above rather
than a semanticallyequivalentone. An alternatve is to
include special textual (or graphical) syntax to denote
existentiality or universality In general however, this may
be inadequatdf thereturnsout to be a large numberof
specialcasedike this one. In this casestudy it turnedout
to be sufficient to encodethe universality (or existentiality)
directly in the messages— i.e., to senda messageo all
clients, a nev messagesend_to_all is created. This is
adequateout, in general,it seemsbeneficialto be able to
expresghis kind of informationexplicitly .

Sequenceliagramsarecurrentlyinadequatdor describ-
ing generalizedscenarios. A generalizedscenariois one
thatdescribesa setof possiblescenariogatherthana sin-
gle trace. We give two examplesof generalizedscenarios
here. Firstly, one may wish to specifythata messagean
be sentor receved at ary point during an interaction. In
hMSCs,this could be expressedisingcorggions. Alterna-
tively, a group of messagesnay be orderindependent—
i.e.,thereis ascenaridor eachpossibleorderingof themes-
sagesndall arevalid. Clearly, describingeachof thesesce-
nariosindividually is time consuming.For hMSCs,order
ing of messagesanbeleft underspecifiedisingcoregions.
Many generalizedscenariogbut not all) canbe expressed
usinghMSCs. However, currentss-algorithmsannotgen-
erateappropriatestatesfor generalizedscenarios.Hence,
theuseof thesealgorithmscanleadto mismatchedetween
theinput sequenceandthe generatedtatemachinesOne
possibleapproacho including generalizedgcenariosn ss-
algorithmsis to generatehierarchicalstates. For exam-
ple,therequirementhatacomponentanreceve messages
my,mo, m3 in ary order can be succinctly expressedis-
ing orthogonaktatesandthe join operator(which impedes

progresantil all its input transitionshave fired) — seeFig-
ure5.

—— | JLJL]
m mejmjen
any order *

Figure 5. Translating Generaliz ed Scenarios

The useof statelabelsaloneis alsoinsufficientin gen-
eral. The continuationfrom one sequencaliagramto an-
other can be expressedoy statelabels (seeFigure 3) but
a bettersolutionwould have beento usehMSCs. hMSCs
include a notationfor specifyinghow individual sequence
chartsconnectusing continuation,jterationand choiceop-
erators.On the otherhand,hMSCsaremorecomple than
sequencaliagrams. Note, also, that statelabels are still
neededin hMSCsfor connectingpointsin the middle of
asequencehart.

In total, twenty requirementswere translatedinto se-
guencediagrams. The procedurewvas mostly painlessthe
main detailbeingin decidingon which componentso rep-
resentin the diagrams.For example,we decidedto repre-
sentClient_Statusexplicitly asa componentbut could al-
ternatvely have represented asa variable. One sugges-
tion for ss-algorithmss to allow the userto specifyhow a
componenshouldbetranslated— currently all algorithms
will generatea statemachinefor eachcomponentn these-
guences. However, it may be usefulto be ableto give a
componengxplicitly in the sequenceliagrambut thenim-
plementit in thedesignor codeasavariable.For detailson
the structureof the sequenceliagramsseesection6.

5.2 Translating into statecharts

Thetwenty sequenceiagramswveretranslatednto stat-
echartausingthe algorithmin [10]. Therequirementgen-
tred aroundthe behaior of CM and Client Statusso stat-
echartswere generatednly for thesecomponents.There
werenot enoughmessage® make it meaningfulto gener
ateastatecharfor F2Panel. For Client, noinformationwas
specifiedasto whenit shouldsendits messagesoahighly
non-determinististatemachinecould have beengenerated
and possiblyusedto generateest cases but this was not
done(testcasesveredevelopedmanually).

The major barrierin the useof ss-algorithmscurrently
is in avoiding over-generalizationof the input scenarios.
Many formsof generalizatiorarepossible- e.g.,generaliz-
ing aconcretanstanceo avariable generalizingamessage

to besentto all instance®f aclass- but mostof theseprob-
ably causemoreproblemsthanthey solve becausét is very
difficult to identify over-generalizations ageneratedtate
maching(it requireghoroughlyunderstandinghe statema-
chineandfailureto do somayresultin bugs). Thereis one
form of generalizatiorthat is crucial for ss-algorithmsto

work well, however—thatof merging samestatesrom dif-

ferentscenarios!f no attemptis madeto memge statesthe
resultis astatemachinewith essentiallyonebranchfor each
scenaridhatcontainsalot of redundanstatesandduplica-
tion of transitions.A variety of approacheto this problem
have beenproposed.Our algorithm[10] takes a heuristic
approach- statecanbememedif they haveanidenticalse-
guenceof transitionsabore somegivenlengthleadinginto
andout of them.

Figure 4 illustratesthe benefitof memging. Thereare
three transitionswith the trigger FAILED _USE. In two
casesthepathsfollowing FAILED _USEin thecorrespond-
ing scenariosarethe sameandso aremerged. In the third
casememingis notappropriatédbecausehefollowing path
is analternatve. In generalmemging in this way produces
amuchmoreconciseandreadablestatemachine Research
still needsto be done,however, on the bestwaysto intro-
ducememing. Using our heuristicapproachpver-zealous
melgingcanstill occur— in thiscasestudy asmallnumber
of over-generalizationkadto be modifiedby hand.

The othermajorobsenation madeduring applicationof
the ss-algorithmwasthat therewere some“hidden depen-
dencies’in the sequenceliagrams.ConsiderFigurel. Ac-
cordingto the semanticof the algorithm,component is
only dependenbn messageg ands, andhencepnly ¢ and
s will appeaiin C’s statemachine However, it maybethat
message canonly be sentoncep hasbeenrecevedby B
(alternatvely, sending; maybeindependensof p). Weterm
sucha dependeng“hidden”. Our ss-algorithmhasno way
to detecthiddendependencieand the resultingstatema-
chineswill not synchronizecomponentsorrectlyin such
cases.Our solutionwasto add an explicit handshak be-
tweencomponent®3 andC'. This solutionworkedwell but
tool supportfor detectinghiddendependenciewould have
beenuseful. Early researchn this areahasbegun [6] but
we did nottry outthesetechnique®n this casestudy

5.3 Generatingcode

Once state machineswere generatedor the CM and
Client. Statuscomponentsthe RationalRoseRealTimetool
wasusedto generateC++ code. This codewastheninte-
gratedinto the existing CTAS codebase. This wasgener
ally a straightforward process. Eachactionin the transi-
tions correspondedo a methodin the original codebase.
In theoriginal design theweathemupdatesubsystenof CM
is polled from its ervironmentevery two seconds. Once

polled,themodulerunsto completion finishingby sending
amessageo oneor moreclients. At this point,theweather
updatesubsystenyields the focus of control. In orderto

facilitatethis, the statemachineggeneratedvere given ad-
ditionaltriggers.Yielding of focusof controlcanoccurin a

givennumberof statesWhencontrolis regained execution
shouldcontinuefrom the exit state.Thesestatesveregiven

atriggerthatis calledfrom the ervironment. This mecha-
nism givesthe samebehaior asthe two secondpolling in

theoriginal design.

At the point of integratingthe code,a small numberof
misunderstandingaere discoseredin the way the scenar
ios had beenwritten. Thesemodificationswere madeto
the statemachineandcodere-generatedUnfortunatelyin
thetime crushthatwasnow ensuing,changesverenot re-
flectedin the scenariosThis leadsusto the conclusionthat
acrucial partof this technologyshouldbe to automatically
maintainconsisteng betweersequenceiagramsandstate
machinesThis couldbedonewith a“backwardsdirection”
algorithmthat keepstrack of the changego the statema-
chineandsuggestgorrespondinghangesn thescenarios.
Althoughtherehasbeensomeresearclonthistopic,agood
solutionhasnotyet beenfound.

RoseRealTime generatesodethatincludesits own run-
time serviceslibrary. The CTAS teamwere not readyto
acceptathird partylibrary suchasthis becaus@f concerns
aboutreliability. As a result, the codewas generatedis-
ing RealTime passiveclassesvhich do not requirea run-
time library. Statemachinedfor passve classeshowever,
have a synchronousnodel of execution— all triggersare
justfunctioncallssothereareno eventqueueon statema-
chines. The main problemwith this is that the sequence
diagramswere written assumingan asynchronousnodel.
As aresult, the statemachinedid not exhibit the expected
behaior. This mismatchnecessitatedomeminor changes
to the statemachines.

6 ResultsSummary

Tablesl and2 give somebasicstatisticson the problem
scenariosandthe generatedartifactsfor the portion of the
weathercontrollogic subsystentonsideredn this paper If
we hadusedhMSCsinsteadbf sequenceiagramsxtended
with statelabels,we could have avoidedinsertingmostof
the statelabels. The RoseR commentgeferredto in the
tablearespecialcommentsntroducedby theRoseR code
generatoto keeptrack of which codeis auto-generatefbr
the purpose®f round-tripengineering.

Whilst the authorsbelieve this casestudyto provide ev-
idencethattransitioningmostly automaticallyfrom scenar
ios to codeis possible,it should be notedthat this case
study hasa numberof characteristicshat may or may not
be sharedwith other examples. Firstly, the requirements

Generaldata

of sequenceliagrams 17

of componentgerdiagram 3-6
Messageslata

total# of messages 75

of messageperdiagram 2-12
average# of messageperdiagram 4.4

of messagethatdon't appeatin statemachines| 0

Statelabelsdata
of statelabels 45
of statelabelsavoidedby hMSCs 36

Table 1. Sequence diagram statistics

CM | Client.Status
states 15 11

LOC generatedby RoseR 986 | 640

#LOC w/outRoseR comments| 672 | 404

Table 2. State machine statistics

werevery well developed. They represent completeand
consistenwiew of the systemand hence therewere very

few andonly minor iterationsin developingthe scenarios.

In a casewherethe ss-algorithmwas being usedto help
develop the requirementsadditionalresultswould be ob-

sened. Secondlythe length of the sequenceliagrams(in

termsof numberof messagesurnedoutto be quite small
on average.This is becausehe requirementsverealready
well structured.This might not be the casefor examplesin

which the requirementsverevague. Thirdly, it is interest-
ing to notethattherequirementslreadyidentify mostof the
stateqe.g.,postinitialize)thatappeaiin the statemachine.
Clearly, the scenariosverewritten from a state-baseger

spectve which may have madethe transitionto statema-
chineseasier In summarythough we believe thatthis case
study represents realisticexamplethat providesinterest-
ing resultsto theresearchers this field.

7 Conclusions

This casestudy has shawvn that it is possibleto gen-
eratecode mostly automaticallyfrom scenarioof the in-
tendedbehaior. Although thereare still somehurdlesto
overcome,we believe it would have beenpossiblefor the
CTAS engineetto carry out this processndependentlyln-
terestingly the engineercould very easily understandhe
sequenceliagramsbut hadtroubleunderstandinghe state-
chartsgeneratedThe hardestpartof the processvasactu-
ally in integratingthegeneratedodeinto theexisting CTAS
system.In particular themessagebadto be mappedo ex-
isting methodcalls andthe previous implementatiormade

useof variablesto representheweathercycle thatbecame
obsoletebut werestill usedby othercomponents.

In generatingstatechartdrom scenariossimple algo-
rithms work the best. The more advancedfeaturesof our
particularalgorithm were not usedand we would conjec-
turethatothercomplex mechanismsgesignedo avoid over
generalizatiorwould causetoo much confusion. Current
ss-algorithmsregenerallygoodenoughto do areasonable
job. The main areathatis not currentlywell supporteds
in maintainingthe consisteng of the differentviewpoints
undermodificationsto the generatedrtifacts.

References

[1] D. Denery H. Erzbeger, T. Davis, S. Green, and
B. McNally. Challenge®f air traffic managemente-
search:Analysis, simulationandfield test. In AIAA
Guidance Navigationand Contmol Confeence 1997.

[2] D.Harel.StatechartsA visualformalismfor complex
systems.Scienceof ComputerProgramming 8:231—
274,1987.

[3] RationalRoseRealTme RationalSoftware Corpora-
tion, Cupertino,CA, 2002.

[4] T. Syst. Incrementalconstructionof dynamicmod-
els for objectorientedsoftware systems. Journal of
ObjectOrientedProgramming 13(5):18-272000.

[5] S.UchitelandJ.Krametr A workbenchfor synthesiz-
ing behavior modelsfrom scenariosln Proceeding®f
the 23rd IEEE International Confeenceon Softwae
Engineering(ICSEO01) Toronto,Canada2001.

[6] S.Uchitel,J.Kramer andJ.Magee Detectingmplied
scenariosn messagsequencehartspecificationsin
Proceedingof the 9th EuropeanSoftwae Engineer
ing Confeence(ESECO01)Vienna,Austria,2001.

[7]1 A. van Lamsweerde. Inferring declaratve require-
mentsspecificationgrom operationakcenarios|IEEE
Transactionson Softwae Engineering 24(12):1089—
1114,1998.

[8] J.WarmerandA. Kleppe.TheObjectConstrint Lan-
guage: PreciseModelingwith UML. Addison-Wesley
ObjectTechnologySeries Addison-Wesley, 1999.

[9] K. WeidenhauptK. Pohl, M. Jarle, and P. Haumer
Scenariosn systemdevelopment: Currentpractice.
IEEE Softwake, pages34—45,March/April 1998.

[10] J. Whittle and J. Schumann. GeneratingStatechart
DesignsFrom Scenarios. In Proceedingsof Inter-
national Confeenceon Softwae Engineering(ICSE
2000) pages314—-323Limerick, Ireland,June2000.

